Geoinformation in Tourismus und Touristik

Der Einsatz von Raumbezug in touristischen Geschäftsprozessen

erstellt durch:
EFTAS Fernerkundung Technologietransfer GmbH

erstellt für:
Anwenderverband für integrierte Rauminformationen und Technologien e.V. (AIR)
Impressum

Herausgeber
Anwenderverband für integrierte Rauminformationen und Technologien e.V. (AIR)
Westring 303
44629 Herne
info@air-verband.de

Verfasser
Dr. Bodo Bernsdorf
Anschrift
EFTAS Fernerkundung
Technologietransfer GmbH
Oststraße 2 - 18
48145 Münster (Westf.)

Version
v 1.0

Stand
Juni 2013

Inhalt

Urheberrecht

Copyright
© AIR e.V. / EFTAS GmbH

Disclaimer

Das Projekt wird gefördert mit Mittel der EU und des Landes Nordrhein-Westfalen
Inhaltsverzeichnis:

1 Management Summary ... 5
2 Einleitung ... 7
 2.1 Ausgangssituation .. 7
2.2 Stand der Technik: Geo-Entwicklungen in der Tourismusbranche 10
 2.2.1 Definitionen .. 11
 2.2.1.1 Tourismus und Touristik ... 11
 2.2.1.2 Raumbezug und Geoinformation ... 12
 2.2.2 Der 10-Jahres-Rhythmus ... 16
 2.2.3 Der Geodaten-Zyklus ... 20
2.3 Bewertung und Aufgaben der Studie .. 22
3 Geschäftsprozesse in Tourismus und Touristik ... 22
 3.1 Beispielhafte Betrachtung von touristischen Geschäftsprozessen 23
 3.2 Geoinformation im Geschäftsprozess – Das Beispiel Reiseführer 26
 3.3 Bewertung von Geschäftsmodellen in der Geo-IT ... 29
4 Trends und aktuelle Entwicklungen ... 31
 4.1 Internet und mobiles Internet ... 32
 4.1.1 Stand der Earth Viewer-Entwicklung ... 33
 4.1.1.1 Kurzbeschreibung ... 33
 4.1.1.2 Beispiele für touristische Umsetzungen ... 34
 4.1.1.3 Bewertung für touristische Geschäftsprozesse ... 35
 4.1.2 Touristische Web-Anwendungen ... 37
 4.1.2.1 Kurzbeschreibung ... 37
 4.1.2.2 Beispiele für touristische Umsetzungen ... 37
 4.1.2.3 Bewertung für touristische Geschäftsprozesse ... 39
 4.1.3 App vs. Dienst im Tourismus ... 41
 4.1.3.1 Kurzbeschreibung ... 41
 4.1.3.2 Beispiele für touristische Umsetzungen ... 43
 4.1.3.3 Bewertung für touristische Geschäftsprozesse ... 47
4.2 Geodaten .. 48
 4.2.1 OpenStreetMap (OSM) und Crowdsourcing ... 49
 4.2.1.1 Kurzbeschreibung ... 49
 4.2.1.2 Beispiele für touristische Umsetzungen ... 52
 4.2.1.3 Bewertung für touristische Geschäftsprozesse ... 54
 4.2.2 OpenData .. 54
 4.2.2.1 Kurzbeschreibung ... 54
 4.2.2.2 Beispiele für touristische Umsetzungen ... 55
 4.2.2.3 Bewertung für touristische Geschäftsprozesse ... 56
 4.2.3 3D ... 57
 4.2.3.1 Kurzbeschreibung ... 57
 4.2.3.2 Beispiele für touristische Umsetzungen ... 58
 4.2.3.3 Bewertung für touristische Geschäftsprozesse ... 60
 4.2.4 360°-Panoramen .. 61
4.2.4.1 Kurzbeschreibung ... 61
4.2.4.2 Beispiele für touristische Umsetzungen 61
4.2.4.3 Bewertung für touristische Geschäftsprozesse 62
4.2.5 Augmented Reality .. 63
4.2.5.1 Kurzbeschreibung ... 63
4.2.5.2 Beispiele für touristische Umsetzungen 64
4.2.5.3 Bewertung für touristische Geschäftsprozesse 64
4.2.6 Datenschutzaspekte .. 66
4.2.6.1 Kurzbeschreibung ... 66
4.2.6.2 Bewertung für touristische Geschäftsprozesse 66
4.3 Positionierung ... 67
4.3.1 GNSS: GPS, Glonass und Galileo .. 67
4.3.1.1 Kurzbeschreibung ... 67
4.3.1.2 Beispiele für touristische Umsetzungen 69
4.3.1.3 Bewertung für touristische Geschäftsprozesse 70
4.3.2 Geotagging .. 70
4.3.2.1 Kurzbeschreibung ... 70
4.3.2.2 Beispiele für touristische Umsetzungen 71
4.3.2.3 Bewertung für touristische Geschäftsprozesse 73
4.4 Aktivitäten .. 73
4.4.1 GeoCaching .. 73
4.4.1.1 Kurzbeschreibung ... 73
4.4.1.2 Beispiele für touristische Umsetzungen 74
4.4.1.3 Bewertung für touristische Geschäftsprozesse 77
4.4.2 GPS-Hiking / GPS-Biking ... 77
4.4.2.1 Kurzbeschreibung ... 77
4.4.2.2 Beispiele für touristische Umsetzungen 78
4.4.2.3 Bewertung für touristische Geschäftsprozesse 78
4.4.3 GPS-Gaming – weitere Möglichkeiten 78
4.5 Mapping in Reisebeschreibungen .. 79
5 Fazit ... 80
5.1 Bewertung der Ausgangsthesen .. 81
5.2 Nächste Schritte ... 86
6 Literatur .. 87
6.1 Fachbücher, Zeitschriftenartikel und Vorträge 87
6.2 Internetquellen ... 91
1 Management Summary

Aktuelle Entwicklungen im Bereich der Global Navigation Satellite Systems und die daraus resultierenden Anwendungen werden ebenso aufgegriffen. So ist es möglich, neue Aspekte zu beleuchten und die Erfahrungen früher Anwender und First Mover in die Studie zu integrieren.

Die Ausführung greift aber auch Themen wie die Informationsbeschaffung und darauf basierender Geschäftsmodelle auf und stellt kritische Fragen. So z.B. die Frage, ob die für die High-end-Anwendungen benötigten Geodaten einen monetären Wert besitzen und der Tourist bereit ist, für diesen Gegenwert zu zahlen. Dabei stößt man unweigerlich auf Crowdsourcing-Projekte wie OpenStreetMap und die OpenData-Diskussion im öffentlichen Sektor. Auch wird die Frage aufgeworfen, welche Anwendungen tatsächlich systemkritisch sind, welche Geodaten wirklich in den touristischen Prozessen benötigt werden und ob Prozesse gestört oder gar unterbrochen werden, wenn raumbezogene Informationen nicht verfügbar sind. Und vielleicht sind Informationen sogar störend! Denn in Gesprächen auf der ITB 2013 schwingen besonders in den Interviews mit internationalen Destinationen kritische Töne mit: Der Kunde verliere sein Interesse an der Destination, wenn er zu viele Informationen im Vorfeld erhält. Das wird in Abbildung 1 humoristisch aufgegriffen und stellt bereits die Zukunftsperspektive der Untersuchungen dar: In einem Folgeschritt sollen solche Fragen zwischen Tourismus- und Geoinforma-
Die Abhandlung schließt mit der Formulierung von neun Ausgangsthesen, die vorläufig aus Sicht der Geoinformationsbranche beantwortet werden. Diese Thesen werden als Diskussionsvorlage für die weiteren Gespräche dienen.

Hinweise für eilige Leser:
Die Studie stellt das Thema umfangreich mit vielen Anwendungsbeispielen dar. Eilige Leser können sich einen guten Überblick verschaffen, wenn sie sich auf die Beschreibung der Ausgangssituation (Kapitel 2.1), der Entwicklung der Geoinformation (in den Kapiteln 2.2.2 und 2.2.3 dargestellt), der Bewertung von Geoinformation in den touristischen Geschäftsprozessen (Kapitel 3.2), einigen Anwendungsbeispielen und dem Fazit mit den Ausgangsthesen in Kapitel 5 beschränken.
2 Einleitung

2.1 Ausgangssituation

So ist es nicht verwunderlich, dass auch die Tourismus-Leitmesse mit dem Thema Geoinformation bisher wenig anfangen kann. Das zeigt eine Recherche hinsichtlich der Internationalen Tourismusbörse (ITB) 2013. Hier wurden die Datenbanken für die angebotenen Produkte mit klassischen Suchbegriffen der Geoinformationsbranche ausgewertet. Unter den 9.238 Ausstellern finden sich überhaupt nur 22 Anbieter (= 0,2 %!), die sich explizit mit raumbezogenen Themen befassen (vgl. [2]).

Auffällig ist jedoch, dass ausgewählte Angebote zu Buchungssystemen bereits Google Maps integrieren - immerhin 10 der 35 raumbezogenen Produktangebote.

Demgegenüber berichtet das Mitgliedermagazin extratour des Deutschen Jugendherbergsverbandes insbesondere im Zusammenhang mit Jugendwanderungen über die Themen GeoCaching (Beispiel: extratour 2012/1) und Wandern mit GPS (Beispiel: extratour 2012/2). Um die Zielgruppe der Schüler für Schulwanderungen zu interessieren, werden dabei sogar neue Produktbegriffe wie GPS-Hiking und GPS-Biking geprägt, die von den Jugendherbergen beworben werden. Diese Produktreihen sind an das Geo-

¹ Unter Earth Viewer werden in dieser Publikation Kartenanwendungen verstanden, die ein vollständiges Bild der Erde in Form von Karten, Luftbildern, Schrägluftbildern oder 3D-Animationen anbieten. Es sind in den Grundformen kostenfreie Angebote, die entweder über eine Internet-Mapping-Komponente (wie etwa Bing Maps) oder eine zu installierende Software (wie etwa Google Earth) genutzt werden können.
Zurück zur ITB-Datenbank: Ein ähnliches Bild bezüglich des Einsatzes von Geoinformation in der Tourismusbranche erhält man, wenn man sich die Produktkategorien anschaut. Relevant erschienen die Kategorien Mobile Technologien /Geo-Systeme sowie Social Media Solutions.

2.2 Stand der Technik: Geo-Entwicklungen in der Tourismusbranche

Die Entwicklungen um das Thema Raumbezug in der Tourismusbranche lässt sich nicht unabhängig von der Entwicklung der Internet- und Mobilfunktechnologien oder der technologischen Entwicklungen der Geoinformationsbranche erklären. Die Tourismusbranche ist dabei eine nutzende Branche, die zwar die Notwendigkeiten definiert, generell aber auf existierende Entwick-
lungen zurückgreift. Anwendungen sind daher häufig in anderem Umfeld bereits gängig und werden für den Tourismus adaptiert.

2.2.1 Definitionen

2.2.1.1 Tourismus und Touristik

Zunächst soll definiert werden, welche Themenfelder man mit den Begriffen *Tourismus* und *Touristik* verbindet. „Tourismus, Touristik und Fremdenverkehr sind die Überbegriffe für das Reisen, die Reisebranche, das Gastgewerbe und die Freizeitwirtschaft“ (vgl. [4]).

Nach Wikipedia hatte man früher zwischen der Sparte für die „Fremden“ oder die „in die Fremde“ Reisenden (*Urlaub, Incoming- und Outgoing-Tourismus*) und der Sparte für Ortsansässige (*Erholung, Freizeitwirtschaft i.e.S.*) unterschieden. Heute spricht man aber allgemein von Tourismus- und Freizeitwirtschaft (vgl. [4]).

Das Gabler Wirtschaftslexikon definiert Tourismus wie folgt: „Tourismus (Fremdenverkehr, touristischer Reiseverkehr) umfasst die Gesamtheit aller Erscheinungen und Beziehungen, die mit dem Verlassen des üblichen Lebensmittelpunktes und dem Aufenthalt an einer anderen Destination bzw. dem Bereisen einer anderen Region verbunden sind. Das Kriterium der Bewegung außerhalb des üblichen Arbeits- und Wohnumfeldes ist allein begriffsbestimmend.“ (vgl. [5])

Anders als die Wikipedia-Beschreibung grenzt das Gabler Wirtschaftslexikon den Begriff Tourismus jedoch vom Begriff Touristik ab: „Im Gegensatz zu Tourismus handelt es sich bei Touristik um den institutionellen Branchenbegriff. D.h. unter Touristik wird die Gesamtheit von erwerbswirtschaftlichen sowie auch Non-Profit-Organisation (NPO) verstanden, die touristische Dienstleistungen produzieren.“ (vgl. [5]). Beispiele seien hierzu Reiseveranstalter, Reisemittler, Tourist Offices, Hotellerie und Parahotellerie, Transportbetriebe (Luftverkehrsgesellschaften, Bahn- und Busunternehmen, Reedereien etc.).

Man kann also letztlich den Blick auf die Nutzer lenken, die touristische Dienstleistungen in Anspruch nehmen (Tourismus) und andererseits diejenigen betrachten, die solche Dienstleistungen anbieten (Touristik). Den Erfahrungen des Autors zufolge, entspricht das aber nicht der praktischen Handhabung der Spezialisten in den lokalen Destinationen, die Tourismus und Touristik oft synonym verwenden.

Für den Raumbezug ist jedoch der Kunde oder Nutzer der touristischen Dienstleistungen entscheidend. Die Definition sagt explizit, dass er seinen Lebensmittelpunkt verlässt. Das impliziert für den geo-affinen Betrachter, dass der Tourist raumbezogene Informationen in Form von Kar-
ten und Daten benötigt, die ihn über seine dann fremde Umgebung umfassend informiert, um den Wert zu erhalten, den er auf der Reise erwartet. Das kann einerseits die Erholung im Urlaub sein, das kann andererseits aber auch die problemlose Durchführung einer Dienstreise sein.

2.2.1.2 Raumbezug und Geoinformation

Demgegenüber stehen die Begriffe der Geoinformationswirtschaft, die in dieser Studie eine Rolle spielen. Dies sind insbesondere Raumbezug, Geodaten, Geoinformation und Geographisches Informationssystem. Entsprechend der obigen Ausführungen bewegen sich Touristen im Raum, sobald sie die Reise beginnen. Sie bewegen sich zum Flughafen oder Bahnhof, fahren mit dem Auto und reisen in ihr Hotel, das irgendwo verortet ist. Am Ort selbst ist von der Landeskunde über die Geschichte bis hin zu den Lokationen von Bars und Partys vieles interessant, was der Tourist aufsuchen wird. Bereist er das Land, muss er sich dort orientieren, um letztlich wieder sicher zu Hause anzukommen. Selbst All-Inclusive-Touristen oder Kreuzfahrer, die ihre Hotelanlage oder das Schiff nicht (oder nur selten) verlassen, müssen sich innerhalb dieser Anlagen orientieren. Auch das hat einen Raumbezug.

Um den Raumbezug eines Objektes nutzen und auswerten zu können und es in das korrekte räumliche Verhältnis zu anderen Objekten zu setzen, werden in den Informationssystemen Geodaten benötigt. Hier wird zwischen Geobasisdaten und Geofachdaten unterschieden.

Geobasisdaten sind „eine Teilmenge der Geodaten, welche die Landschaft (Topographie) und die Liegenschaften der Erdoberfläche interessenneutral beschreiben. Zu ihnen zählen im Wesentlichen die Daten der Vermessungsverwaltung, die als Grundlage für viele Anwendungen geeignet sind.“ (vgl. Bill, R. 2010, [7])

Hier wird es nun für den Tourismus und die Touristik interessant, denn diese Definition ist sehr weit gefasst. Alles, was auf der Erdoberfläche verortet werden kann, ist möglicherweise für den Tourismus interessant. Neben der Lage der Route zum Flughafen oder die Rad- und Wander-tour gehört dazu jegliche Information, die ein Objekt von Interesse (OVI oder Point of Interest, POI2) beinhalten kann. Dazu zählen in modernen Tourismus-Portalen u.a. die textliche Beschreibung, Bilder, Audio- und Video-Beiträge, die ein Objekt charakterisieren. All diese Informationen sind mit dem Objekt verbunden, weisen damit einen Raumbezug auf und lassen sich in solchen Systemen auch auswerten.

Bringt man z.B. seine eigene Position mit den auf den Geobasisdaten abgebildeten Geofachdaten (einem POI) in Verbindung, entsteht eine Information, die raumbezogene Fragen für den Touristen beantworten kann. Klassischer Weise sind das Fragen wie:

- Wo befinde ich mich im Verhältnis zu meinem Ziel (z.B. Hotel oder Ausflugsziel)?
- Wo befindet sich der nächste POI (z.B. Raststätte, Museum oder Freizeitpark)?
- Wie komme ich am schnellsten / auf dem kürzesten Weg dorthin (z.B. als Autofahrer oder Fußgänger)?
- Mit welchem Verkehrsmittel komme ich am schnellsten dorthin (z.B. Individualverkehr oder ÖPNV)?

2 Objekt von Interesse (OVI) wird international auch als Point of Interest (POI) bezeichnet. Ein POI ist die „Bezeichnung für wichtige Objekte, meist aus dem öffentlichen Bereich, die als punktförmige Daten“ gespeichert werden (vgl. [9]).
• Was genau befindet sich dort (z.B. Bootsanlegestelle, Radstation oder Kathedrale)?

Genau diese Aufgabe erledigt die Karte für den Touristen. Ein Wanderer benutzt eine Wanderkarte, um auf den markierten Routen sicher seinen Weg zu finden und ein Restaurant für die Mittagsrast etwa auf der Hälfte des Weges zu entdecken. Die Wanderkarte als verkleinertes Abbild der Realität liefert alle notwendigen Informationen. Durch das Studieren der Karte vollzieht sich also der geforderte Informationsprozess, der Wanderer kann entsprechend seiner Wünsche über die Route entscheiden und feststellen, ob er zur Mittagszeit ein geeignetes Restaurant am Wegesrand vorfinde.

Entsprechend dieser Definition kann auch ein Touristisches Geo-Informationssystem als spezielle Ausprägung von GIS im Bereich des Tourismus gesehen werden. Denn bereits einfache Tou-
Geoinformation im Tourismus

rist-Informationssysteme enthalten Geodaten - meist in Form einer Übersichtskarte, um z.B. ein Hotel im Unterkunftsverzeichnis zu finden (vgl. [13]).

Diese Informationssysteme stellen die Geodaten systematisch für das Informationsbedürfnis eines Touristen zusammen und bieten sie entsprechend der Fragestellung an. Das bedeutet, dass ein solches digitales Medium in der Lage ist, alles auszublenden, was für die aktuelle Nutzung nicht relevant ist. Für Radtouristen zeigen Portal und Informationssystemen keine Wanderwege an, für Bahnreisende werden die Flughäfen ausgeblendet, usw. Anders als in der analogen Karte ist ein TIS in der Lage, die entsprechenden Informationsebenen oder Layer nutzergerecht zu kombinieren. Der Tourist wird so in die Lage versetzt, seine raumbezogenen Fragen einfach zu beantworten. Je nach Umgebung kann dies online oder offline in stationären (PCs) oder mobilen (Tablets, Smartphones) Geräten geschehen.

Ein wichtiger Aspekt für die vorliegende Studie ist die Diskrepanz zwischen der Sichtweise der Geoinformationswirtschaft und des touristischen Nutzers. Verbindet der Geo-Spezialist mit einem GIS eine eher komplexe Maschinerie (vgl. obige Definition), die im Idealfall ihre Daten auch noch über eine ausgefeilte und standardisierte Infrastruktur (der Geodateninfrastruktur oder GDI) bezieht, sind die Fragen der touristischen Anwender oft sehr einfach und ein Blick auf die Karte reicht aus, um die Frage zu beantworten. Daher kommen in touristischen Geschäftsprozessen klassische Earth-Viewer, die eine Karte oder ein Luftbild darstellen und auf diesen POIs mit allen denkbaren Informationen abbilden, eher zum Einsatz als die in der Geoinformationsbranche bekannten GIS-Softwareprodukte. Teile der Geoinformationsbranche möchten demgegenüber aber gerne ihre Software-Lizenzen verkaufen und bieten der Tourismusbranche deshalb komplexe GIS-Produkte an. Aufgrund der vielfältigen Analysemöglichkeiten sind diese Produkte für den Geschäftsprozess jedoch ungeeignet, weil sie zu viel Funktionalität enthalten und dadurch kompliziert zu bedienen sind. Hier werden einfachste Anwendungen benötigt, die jeder ohne Schulung sofort bedienen kann. Dies ist für die GIS-Anbieter aber wiederum unattraktiv, weil sie eine Vielzahl bereits bestehender Funktionalitäten weglassen müssen und dadurch in andere Kostenstrukturen gelangen.

3 Unter einer Geodateninfrastruktur (GDI) versteht man den standardisierten Verteilmechanismus für Geodaten. Standards des Datenaustauschs sind dabei erheblich, da sich die unterschiedlichen Informationssysteme auf dieser Basis verständigen und die Daten jeweils korrekt wiedergeben. Detaillierte Definition vgl. [14].

Diese Ausführung soll belegen, dass sich die Anwendungen an den Nutzern und ihren Bedürfnissen orientieren müssen und nicht umgekehrt. Aber dahinter steht eine lange Entwicklung und ein enormer technischer Fortschritt auf Seiten der Geoinformationswirtschaft (GIW) und in der Informations- und Kommunikationstechnologie (IKT) im Allgemeinen.

2.2.2 Der 10-Jahres-Rhythmus

Hinweis:

Die folgenden Überlegungen in Kapitel 2.2.2 und Kapitel 2.2.3 sind Resultate aus einem Gespräch zwischen dem Autor und Prof. Dr. Roland M. Wagner, Beuth Hochschule für Technik, Berlin (vgl. [14])

Das änderte sich Mitte der 1990er Jahre mit der Verbreitung von Client-Server-Systemen. Ab sofort war der Zugriff durch eine größere Nutzergruppe innerhalb abgeschlossener IT-Umgebungen auf geographische Information möglich. Vernetzte Arbeitsplätze waren üblich und so wuchs die Gruppe derjenigen, die mit raumbezogenen Informationen in Kontakt kamen.

⁴ DSL ist ein Übertragungsstandard für Daten im Internet. Definition z.B. unter [17].
⁵ Das sind insbesondere die Standards des Open Geospatial Consortiums (OGC) wie z.B. der WebMapping-Standard WMS, die durch ISO und DIN später aufgegriffen und verbreitet wurden.

Abbildung 5 bietet einen Blick auf das heutige Google Earth mit intuitiver Bedienung über Schaltelemente und Mausklicks. Der Spielfaktor ist durchaus bedeutend, der Anwender soll erkunden und entdecken. Im oberen Bild (Suchergebnis) sind bereits touristische Informationen wie POIs zu Cafés, Kinos etc. enthalten. Alle Icons enthalten textliche oder bildliche Informationen (z.B. Innenansicht unten rechts), die über das sog. Crowdsourcing (vgl. Kapitel 4.2.1) von Google Earth-Nutzern eingebracht wurden. So ergibt sich für den Reisenden bereits eine große Informationsfülle inklusive Routing zur Anreise.

\(^6\) HSPA oder High Speed Package Access ist ein schneller Mobilfunkübertragungsstandard, der auf UMTS aufsetzt und diesen verbessert. Definition z.B. unter [19].
Abbildung 5: Google Earth
2.2.3 Der Geodaten-Zyklus

Hier lohnt sich ein Blick auf die Entwicklung innerhalb desselben Zeitraums aus einer anderen Perspektive. Es geht um die Erfassung und die Nutzung von Geodaten sowie der sich daraus ergebenden Möglichkeiten für den Tourismus und die Touristik. Abbildung 6 zeigt die Entwicklung grafisch auf.

Vor den 1950er Jahren gab es keine Möglichkeit der Digitalisierung von Geodaten und somit keine digitale Verarbeitung der Geodaten, die Prozesse liefen auf die bekannten analogen Karten hinaus.

Parallel zur Entwicklung der Computer wurde besonders in den 1980er und 1990er Jahren versucht, die Objekte der realen Welt möglichst korrekt im Rechner abzubilden. Diverse Methoden der Digitalisierung ermöglichten die Erfassung der Objekte. Verbreitet waren:

- Digitalisierung analoger Vorlagen von Papierkarten auf Digitalisiertabletts (Vektordaten)
- Digitalisierung analoger Karten über Trommel- oder Flachbettscanner (Rasterdaten)
- Digitalisierung resp. konkreter: Vektorisierung gescannter Rastervorlagen wie z.B. Luft- und Satellitenbilder auf dem Bildschirm (Onscreen-Digitalisierung)

Die digitale Vermessung und der Einsatz von GPS-Geräten entwickelten sich parallel, so dass ab Mitte der 1990er Jahre auch im Gelände bereits digitale Daten erfasst werden konnten.

Mit der weiten Verbreitung der Geodaten im Internet ging die Nutzung der Daten durch breite Anwenderschichten einher. Beispiele sind Portale, die im Sinne eines Fachinformationssystems alle erdenklichen Informationen auf Kartenbasis darstellen. Das sind z.B. touristische, aber auch Wirtschaftsförderungsportale (vgl. [24]).

Die Anwendungszwecke reichen von der Information über die unmittelbare Umgebung, über die ins Sichtfeld eingebundene Navigation bis hin zu Spielen und Werbung.“ (vgl. [25])

Abbildung 6: Der Geodaten-Zyklus von der realen Welt bis zur Augmented Reality (Bildquellen vgl. [22], [23] und [24]).

Der Anwender hält das Smartphone auf einen Straßenzug, die Kamera nimmt das Bild auf und via Internet werden georeferenzierte Themen in der Datenbank abgefragt. Diese digitalen Informationen projiziert die Anwendung in die reale Welt des Kamerabildes. Bereits zum Einsatz kommt diese Technologie bei Restaurant-Findern wie etwa die App Wohin? der Firma FutureTab GmbH (vgl. [22]). Wurde ein Restaurant (Hotel oder andere Einrichtung) gefunden, ist die Anwendung in der Lage, aufgrund der bekannten Positionen des Anwenders und des Restaurants den Nutzer exakt zum Ziel zu navigieren.
2.3 Bewertung und Aufgaben der Studie

Internet- und Mobilfunktechnologien sowie die Technologien und Daten der Geoinformationsbranche sind bereits sehr weit entwickelt. Heute ist es möglich, den Touristen mit ausgefeilten Anwendungen große Informationsmengen passgenau für seine Situation an (nahezu) jedem Ort der Welt anzubieten.

Kapitel 2.1 zeigt jedoch, dass diese technischen Möglichkeiten nicht unbedingt im Fokus der Touristik stehen.

Die Studie ist Teil des Projektes geonet 2.0, das zum Ziel hat, die Nutzung von Geoinformation und Raumbezug in mehreren Zielbranchen zu eruieren. Es geht letztlich um die Geschäftsprozesse in den Branchen und die Frage, ob Raumbezug in den Geschäftsprozessen benötigt wird oder was passiert, wenn Raumbezug nicht genutzt wird.

Die Aufgabe der vorliegenden Studie besteht darin, für den Bereich Tourismus / Touristik eine Diskussionsgrundlage zu schaffen. Sie weist einen starken Bezug zu den Möglichkeiten der Geoinformationswirtschaft auf und stellt Technologien dar, die mit Blick auf eine Nutzung im Tourismus bewertet werden.

In der Folge werden Gespräche mit Experten geführt, die aus Sicht der Tourismusbranche bewerten werden, was von den hier dargestellten Möglichkeiten im Tourismus nutzbar ist und was nicht. Dadurch soll die aus Sicht eines Geo-Spezialisten - offensichtliche Diskrepanz beleuchtet werden. Es wird eruiert, welche Notwendigkeiten in den jeweiligen Prozessen bestehen. Der Blick soll dadurch von der angebotsgetriebenen Sichtweise der Geoinformationswirtschaft auf die Notwendigkeiten für die Nutzung von Raumbezug im Tourismus gelenkt werden. Dazu wird eine Folgestudie vor allem die Sichtweise dieser Branche untersuchen.

Vom Blickwinkel der Geschäftsprozesse in der Tourismusbranche ausgehend, wird der Status quo beschrieben und dargestellt, welche Trends der Geoinformationswirtschaft für den Tourismus sinnvoll und nachweisbar sind und wo sie bereits eingesetzt werden.

3 Geschäftsprozesse in Tourismus und Touristik

dient die Verordnung über die Berufsausbildung zum Tourismuskaufmann und zur Tourismus-
kauffrau (Kaufmann/Kauffrau für Privat- und Geschäftsreisen) vom 19. Mai 2011 (vgl. [31]).
Dabei wird unterschieden nach berufprofilgebenden Fertigkeiten und sog. Berufsbildpositio-
nen.

3.1 Beispielhafte Betrachtung von touristischen Geschäftsprozessen

Die folgende Auflistung zeigt die Inhalte der Ausbildung. Die blaue Markierung zeigt auf, in
welchen Themenfeldern aus Sicht des Autors raumbezogene Fragen beantwortet werden müs-
sen nicht, ob dieser Bezug in der Ausbildung auch hergestellt wird.

Berufsfprofilgebende Fertigkeiten

- Gestaltung von Produkten und Leistungen:
 - Tourismusspezifische Systematik,
 - Destinationen,
 - Produkte und Leistungen,
 - Eigenveranstaltungen,
 - Nachhaltigkeit und Umweltaspekte im Tourismus;

- Touristisches Marketing:
 - Marktanalyse und Marketingmaßnahmen,
 - Werbung und Verkaufs förderung,
 - Vertriebs- und Absatzkanäle,
 - Öffentlichkeitsarbeit;

- Service und Qualität:
 - Serviceleistungen,
 - Qualitätssicherung im Service;

- Kommunikation, Kundenberatung und Verkauf:
 - Kundenorientierte Kommunikation, Kundenbetreuung,
 - Beschwerdemanagement,
 - Anwenden einer Fremdsprache bei Fachaufgaben;

- Rechtliche Grundlagen des Tourismus:
 - Vertragsrecht,
• Reise- und Beförderungsrecht;

• Kaufmännische Steuerung und Kontrolle:
 • Rechnerische Abwicklung und Zahlungsverkehr,
 • Kosten- und Leistungsrechnung,
 • Kaufmännische Steuerung,
 • Unternehmerisches Handeln;

Berufsbildpositionen

• Reisevermittlung:
 • Vorbereitung und Beratung,
 • Verkauf,
 • Nachbereitung und Service;

• Reiseveranstaltung:
 • Vorbereitung und Nachbereitung,
 • Leistungseinkauf und Vertragsgestaltung,
 • Vertriebsmedien und -kanäle,
 • Kundenservice;

• Geschäftsreisen:
 • Planung und Organisation,
 • Reservierung und Buchung,
 • Reisekostenabrechnung und Controlling;

Man erkennt die Vielfältigkeit der zu schulenden Themenfelder und dass ein Großteil der diesbezüglichen Prozesse raumbezogene Fragen aufweisen. Es ist jedoch kaum erfassbar, wie diese Prozesse Raumbezug berücksichtigen.

Prozesse der Leistungsanbieter

- Transportleistungen
- Transferleistungen
- Beherbergungsleistungen
- Gastronomieleistungen
- Events
- Attraktionen
- Führungen
- Wellness-Anwendungen
- etc.
- Prozesse der Marketingsysteme
 - Yield Management
 - Vertriebskanalmanagement
 - Elektronische Zahlungssysteme
 - Kundenbeziehungsmanagement (CRM)
 - E-Learning (im Marketing & Vertrieb)

Prozesse der Reisemittler

- Prozesse der Handelsvertreter
- Prozesse der Reisebüros (Urlaubs- oder Geschäftsreisen)
- Prozesse stationärer Reisebüros (Offline – Ladengeschäft/ Reisebüro)
- Prozesse der Online-Reisebüros (virtueller Reisemittler – Webshop)
- Prozesse der Call-Center
- Prozesse in Tourismusorganisationen der Destinationen

Prozesse um den Endkunden

3.2 Geoinformation im Geschäftsprozess – Das Beispiel Reiseführer

Abbildung 7: IT-Systeme in der touristischen Wertschöpfung – Beschränkung der Geoinformation auf den Endkunden (Quelle: Schulz, A.et al. (2010), S. 4)
In vielen touristischen Prozessen von der Planung einer Destination oder eines konkreten Angebots (z.B. Wanderwege) über den Verkaufsprozess (Rauminformationen zur Destination, Hotel und POIs) bis hin zur Anreise und zum Aufenthalt des Touristen vor Ort (Hoteladresse, Start-Flughafen, Tourrervorschläge und Museumsbesuche) findet sich eine Reihe von Geoinformationen. Die Fachliteratur gewichtet das Thema aber nicht in dem Maße, weil Geoinformationen nur ein kleiner Anteil im Gesamtprozess sind. In Abbildung 8 ist das schematisch dargestellt.

Es stellt sich die Frage, was im Prozess bei Entfernen der Geoinformationen passiert. Jeder kann ein Kapitel über die lokale Küche problemlos lesen, ohne den Raumbezug zu kennen. Hierbei sei einmal davon abgesehen, dass der Titel des Reiseführers tatsächlich schon Raumbezug enthält,

Abbildung 8: Geoinformation im Geschäftsprozess "Reiseführer"

\[\textit{Abbildung 9: Prozessunterbrechung durch fehlende Information im Geschäftsprozess "Reiseführer"}\]

\[\text{7 Aus geographischer Sicht sei natürlich darauf hingewiesen, dass man in jedem Fall raumbezogene Information benötigt, um natürliche Grenzen wie Flusslandschaften oder Gebirge auf die Auswirkung der Landeskunde (Staatsgebiet, Klima, etc. pp.) verstehen zu können. Aber man kann sich auch vorstellen, dass ein Reiseführer lediglich die Fakten beschreibt und nicht auf die Zusammenhänge eingeht. In diesem Fall würde man keine raumbezogenen Informationen benötigen, um zu akzeptieren, dass das Staatsgebiet da liegt, wo es liegt und dass z.B. die Monate Februar bis Mai die Regenzeit im Lande sind.}\]
3.3 Bewertung von Geschäftsmodellen in der Geo-IT

8 B2C steht für Business to Customer und ist eine englisch ausgesprochene Abkürzung, die ein direktes Angebot an einen Endkunden bezeichnet.

9 B2B steht für Business to Business und ist eine englisch ausgesprochene Abkürzung, die ein Geschäftsverhältnis zwischen zwei Unternehmen bezeichnet. Im vorliegenden Fall hatte eines der beiden Unternehmen (Ortovox) ein wirtschaftliches Interesse daran, seine Endkunden mit einer App zu versorgen und beauftragte ein anderes Unternehmen (Alpstein) mit der Herstellung dieser App.

Andererseits prognostizierte das Marktforschungsinstitut Juniper Research¹⁰ schon 2009, dass alleine die Einführung der Augmented Reality in mobile Anwendungen den Markt bis ins Jahr 2014 auf 732.000.000 US-$ pushen würde (vgl. [29]). Die Verbreitung der Smartphones biete (Stand?) heute durchaus eine gute technologische Plattform, der Durchbruch wird aber auch im Jahr 2013 noch nicht erfolgen (vgl. Kapitel 2.2.3).

Die Problematik der Kosten für Geodaten greifen auch andere Anbieter in ihren Geschäftsmodeilen auf. Die Lösung: Die Kunden werden von der Problematik fern gehalten, wenn sie die Anwendungen kaufen. So hat das Informationssystem visitcity über den Systempartner Intergraph eine Lizenzvereinbarung mit Microsoft getroffen und nutzt die Daten von Bing Maps, was für die Endkunden kostenfrei ist. Da die Kartendaten über eine API eingebunden wird, hat der Nutzer keine Aufwände bei der Datenaktualisierung, dies geschieht auf Seiten von Bing Maps. (Alisch, M. 2011). Den gleichen Vorteil haben die Anwendungsentwickler, was das Geschäftsmodell deutlich attraktiver macht.

¹⁰ Juniper Research ist ein Marktforschungsunternehmen, dass sich auf mobile Telekommunikation, angebotene Inhalte/Content und mobile Anwendungen fokussiert (vgl. [29])
des Regionalverbandes ist. Daher fallen dafür ebenfalls keine Datenkosten an, sondern diese sind mit der Verbandsumlage abgegolten (Bernsdorf, B. 2011/2).

Gleicht man nun diese Ausführungen mit denen aus Kapitel 3.2 ab, ist es durchaus verständlich, warum sich auch auf der Branchenmesse ITB das Thema Geoinformation nur rudimentär findet.

4 Trends und aktuelle Entwicklungen

Mit Blick auf diese und den in Kapitel 2.3 aufgestellten Thesen sollen die aktuellen Trends in der Geoinformationswirtschaft weiter beleuchtet werden. Dabei wird versucht, eine möglichst neutrale Haltung einzunehmen und sinnvolle Anwendungsbereiche im Tourismus aufzuzeigen. Um die Entwicklungen passgenau in die Tourismusbranche einzugliedern, werden zunächst die Trends im Tourismus betrachtet. Im Jahr 2008 betrachtete Bauhuber, F. (2008; [32]) bereits IT-getriebene Themen als die dominierenden und zentralen Trends im Tourismus. Folgende sieben Trends leitet Bauhuber, F. (2009; [32]) aus den Entwicklungen ab:
• Internet als Informations- und Buchungsmedium
• Mobilität von Diensten / Location Based Services, da die Dienste die Handys der Gäste erreichen und keine speziellen Leihgeräte mehr benötigt werden
• Allgegenwärtigkeit (Ubiquität) von IT-Systemen, da die Hardware immer günstiger, kleiner und haltbarer werden und z.B. in Outdoorbekleidung oder Gästekarten eingesetzt werden können
• Social Software wie Blogs, Soziale Netzwerke, Video- und Bildplattformen, Wikis und Co.
• Neuronales Marketing im Internet wie etwa aufmerksamkeitsstarke Gestaltung und Kommunikation touristischer Angebote
• Mapping, da OpenStreetMap (OSM) den touristischen Kartographiemarkt nachhaltig verändern wird
• Performance Marketing, also die Messbarkeit von Marketing-Aktivitäten

4.1 Internet und mobiles Internet

11 Eine gute Zusammenstellung über Entwicklung und Geschichte des Internets findet sich in Wikipedia.de [35]

4.1.1 Stand der Earth Viewer-Entwicklung

4.1.1.1 Kurzbeschreibung

\(^{12}\) API steht für Application Programming Interface. Eine API ermöglicht die Anbindung von Fremdsoftware in eigene Entwicklungen (vgl. [36])
4.1.1.2 Beispiele für touristische Umsetzungen

MapQuest Discover

Als touristische Anwendung ist seit Ende 2012 der MapQuest Discover auf dem Markt. Anders als die klassischen Earth Viewer spricht MapQuest den Nutzer nicht mit einer Karte an, sondern steigt mit Bildern ein, die Lust auf das Entdecken machen (vgl. Abbildung 11).

Als erster globaler Anbieter solcher Kartenanwendungen setzt MapQuest auf OpenStreetMap-Daten (vgl. Kapitel 4.2.1) und nicht, wie andere Anbieter, auf eigene oder zugekaufte Karten. Alle touristisch relevanten Informationen werden im geographischen Kontext der OSM-Daten angezeigt (MapQuest 2012).

Web-Auftritt Stadt Bergheim

Einem anderen Ansatz ist die Stadt Bergheim (Rheinland) gefolgt: Sie hat die freie Enzyklopädie Wikipedia.de mit den Bergheimer Sehenswürdigkeiten gefüllt und diese dann in den Bergheimer Stadtführern abgebildet. Das sind zwei Paperback-Bände, die man gegen geringe Gebühr...

Weitere Beispiele für Umsetzungen auf Earth Viewer-Basis finden sich im folgenden Kapitel 4.1.1.

Abbildung 12: MapQuest-Kartenbild auf OpenStreetMap

4.1.1.3 Bewertung für touristische Geschäftsprozesse

Das haben auch Anbieter erkannt. Ruft man z.B. Google Earth auf, erscheint an prominenter Stelle gleich unter der Suchanzeige das Angebot, dass 20 Hotels in Münster über booking.com

Abbildung 13: Stadtführungen der Stadt Bergheim auf Google Maps. Der textliche Content wurde über Wikipedia.de eingebunden [39].

Jedoch gibt es kartographische Beschränkungen, die manchen Geschäftsprozess limitieren. Insbesondere im Bereich der Leistungsanbieter und dort in der Planung von Destinationen und Angeboten wie etwa Events, Attraktionen, Wanderwege und Radtouren sind solche Viewer nur rudimentär einzusetzen. Das liegt daran, dass die Kartengrundlagen für viele Fragen nicht ausreichend genau sind. Auf Bing Maps ist im innerstädtischen Bereich durchaus ein Fußgängerrouting möglich,

Im Unterschied zu vielen anderen Anwendungen, basiert der Radrouteplaner NRW nicht auf den Earth Viewern. Es handelt sich um eine Eigenentwicklung, die mit öffentlichen Daten der Vermessungsverwaltung unterlegt ist.

Ebenfalls ein interessantes Projekt ist das Naviki-Projekt der Fachhochschule Münster (vgl. [43]). Naviki basiert als CrowdSourcing-Instrument für Radwege auf den Daten von OpenStreetMap und wird weiter unten detaillierter angesprochen (vgl. Kapitel 4.1.3.2).
Web-Auftritt Internationale Bodensee Tourismus GmbH

4.1.2.3 Bewertung für touristische Geschäftsprozesse

\(^{13}\) Metro Design war der Codename für die Benutzeroberfläche von Windows 8. Heute heißt das Design Modern UI [44]
Abbildung 16: Oberfläche des Web-Auftritts der IBT GmbH im Metro-Design [45].

Abbildung 17: Oberfläche der Kartenanwendung im IBT-Web-Auftritt [46].

4.1.3 App vs. Dienst im Tourismus

4.1.3.1 Kurzbeschreibung

Seit Apple aus einer im Mobilfunk schon lange existierenden Gegebenheit kleiner mobiler Anwendungen wie Kalendern etc. auf Mobiltelefonen marketingtechnisch die App (oder korrekt: native oder mobile App; vgl. [47]) geschaffen hat, schwelte der Streit um das Thema App oder Dienst. Es geht um die Glaubensfrage, ob sich die App oder der mobile Dienst zukünftig durchsetzen wird. Wie immer hat beides Vor- und Nachteile.

Der Vorteil der mobilen Applikation liegt in der Möglichkeit, die Hardware des mobilen Endgerätes optimal zu nutzen und für die Anwendung einzusetzen. Dafür ist die App jeweils auf das Betriebssystem des Endgerätes beschränkt und muss für jede Plattform neu entwickelt werden. Aber auch das kann Vorteile haben, da die GUI14 sich an das Design von Betriebssystem und Endgerät anpassen kann. Das Problem des Mehrfachaufwandes wird über das sog. CrossCompiling gelöst (vgl. [48]). Ein wichtiger Punkt: Im Allgemeinen wird für die App die Rechenkapazität des Endgerätes genutzt, so dass es erst mit modernen Geräten Spaß macht, solche Apps auch

14 GUI steht für Graphical User Interface (= graphische Benutzeroberfläche) und beschreibt die Bedienoberfläche, der Anwendung, die dem Nutzer zur Verfügung gestellt wird [49]
zu nutzen. Einen weiteren Vorteil sehen Verfechter der App in der Fokussierung der Anwendung. Man könnte aus einem Wust an (Geo-)Daten die Anwendung so aufbauen, dass der Nutzer von „einer zielgerichteten, einfachen, intuitiven und optisch ansprechenden Nutzung von Geoinformationen profitiert“ (Quelle: ESRI Unternehmensgruppe 2011/2, S. 13)

4.1.3.2 Beispiele für touristische Umsetzungen

Beispiel ape@map

Bereits seit 2008 ist ape@map der Firma Onyx Technologie OG aus Österreich auf dem Markt. Ursprünglich handelte es sich um eine Applikation, die sich vor allem der Orientierung auf Wander- und Mountainbike-Touren widmete. Damit war sie – ähnlich wie ein GPS-Gerät – sehr speziell auf ein bestimmtes Ziel fokussiert (Spasojevic, Z. 2010).

ape@map liefert heute zudem spezielle ortsbezogene Informationen, wie Routen in der Nähe oder Höhenprofile, die für die Planung relevant sein können. Abbildung 18 zeigt die Anwendung auf einem ca. vier Jahre alten Endgerät. Die Homepage des Herstellers zeigt aber, dass sich das Produkt weiter entwickelt hat und heute für Android-Betriebssysteme ebenso verfügbar ist, wie für iPhones (vgl. [51]).

Das Produkt verfolgt eine interessante Strategie, die im App-Umfeld eher unüblich ist und aus dem Umfeld der klassischen GPS-Geräte stammt. ape@map besteht aus zwei Komponenten, von denen eine auf einem PC installiert wird, die andere auf dem mobilen Endgerät. Über den PC können verschiedene Kartenausschnitte ausgewählt und auf das Mobiltelefon geladen werden. Das Verfahren stellt sicher, dass ape@map nicht nur funktioniert, wenn eine Online-Verbindung besteht. Spasojevic, Z. (2010) beschreibt, dass Karten und Routen auch online erhältlich sind und aktualisiert werden. Bezüglich der Daten steht eine breite Palette zur Verfü-

Abbildung 18: ape@map auf einem ca. vier Jahre alten Sony Ericsson Cybershot (Quelle: Spasojevic, Z. 2010, S. 50)

ape@map setzt heute auch den angesprochenen Community-Gedanken um: Über einen Navigation Message Service (NMS) lassen sich Positionsdaten an Freunde versenden, um Treffpunkte zu vereinbaren. Diese Funktion steht auch für etwaige Notrufe zur Verfügung. Zudem können selbst aufgezeichnete Tracks oder andere Informationen mit Freunden ausgetauscht werden (Spasojevic, Z. 2010).
Beispiel Ortovox Skitouren App

Anders als bei normalen Rad- und Wandertouren benötigt der Tourengänger und Freerider spezielles Fachwissen zur Beurteilung der aktuellen Wettersituation oder der Lawinengefahr. Die App unterstützt somit bei der Auswahl geeigneter Routen, um das Risiko zu minimieren. Der Nutzer kann über die Check & Ride-Funktion vielfältige Informationen wie den aktuellen Lawinenbericht abrufen und wird so bei seiner Entscheidungsfindung unterstützt.

Da in abgelegenen Bergregionen nicht von einer entsprechend guten Mobilfunkabdeckung ausgegangen werden kann, stehen auch offline Informationen zur Verfügung. Das Werkzeug liefert Informationen über Hangneigungen, Exposition zur Sonne und vieles mehr. Für weniger technisch-orientierte Nutzer fasst die Anwendung die Ergebnisse für eine gewählte Route in einem einfachen Ampelsystem zusammen, so dass auch keine Missverständnisse bei der Interpretation der Daten auftreten können.

Der Hersteller weist explizit darauf hin, dass die App lediglich die Entscheidung unterstützen kann. Eine grüne Ampel heißt nicht zwangsläufig, dass eine Strecke vollständig gefahrlos zu befahren ist und der Nutzer seine Kenntnisse in die Interpretation mit einbringen muss (Soutschek, M. & Müller, K. 2011).
Beispiel mapsinside

Weiterhin interessant ist die Entstehung von mapsinside. Es handelt sich um ein Community-Projekt in Essen und basiert initial auf der Diplomarbeit eines der Community-Mitglieder. Das Projekt sucht Technologiepartner, die von der Integration der Technik profitieren. Auch werden Sponsoren zur Finanzierung der Weiterentwicklung gesucht.

Abbildung 21: Die mapsinside-App für Android-Systeme fokussiert auf Indoor-Positionierung

4.1.3.3 Bewertung für touristische Geschäftsprozesse

Aufgrund des teilweise bereits enthaltenen Community-Gedankens strahlen sie auch in die Felder Web 2.0 und Social Media, zudem sind sie oft in der Lage, eigene Tracks aufzunehmen und können daher als Werkzeuge für das Crowdsourcing (s.u.) angesehen werden.

4.2 Geodaten

4.2.1 OpenStreetMap (OSM) und Crowdsourcing

4.2.1.1 Kurzbeschreibung

Laut Wikipedia überschritt die Zahl der Erfasser Mitte Januar 2013 weltweit die 1.000.000-Grenze. In nur 14 Monaten hat sich damit die Zahl der Kartierer auf einem hohen Niveau verdoppelt und seit 2009 sogar verzehnfacht (vgl. [58]).

15 ODbL steht für Open Data Commons Database License und beschreibt eine Lizenz für Datenbank intensive Gemeingüter wie die OSM-Daten [59].
hochwertig „...weil die Qualität der Daten erheblich besser ist als bei der Konkurrenz.“ (Thalmann, T. 2010, S. 15.). Mit Konkurrenz meint Thalmann Google, Bing, Navteq und weitere Kartenanbieter.

Abbildung 23: Die OpenStreetMap im Bereich Münster-Innenstadt zeigt ein sehr aufgeräumtes Bild im sog. "deutschen Stil" (Quelle: [60], Lizenz: ODbL)

Der Datenpool verdichtet sich mit der zunehmenden Anzahl an Erfassern ständig. Trotzdem weist das OSM-Projekt darauf hin, dass die Daten regional sehr unterschiedlich kartiert sind. In einigen Bereichen ist man bereits weiter als viele proprietäre Anbieter, in anderen Bereichen ist die Abdeckung noch sehr gering (vgl. [56]). Aus eigener Erfahrung kann der Autor bestätigen, dass im Jahr 2012 Radtouren im Münsterland hervorragend mit OSM-Daten planbar waren und die Daten keine Lücken aufwiesen. Demgegenüber war die Planung einer Wanderung im portugiesisch-spanischen Grenzgebiet zwar bezogen auf die Wegeverläufe gut machbar, aber es fehlten viele Zusatzinformationen, die im Gegenzug in topographischen Karten der Landesvermessung enthalten sind. Man könnte natürlich auf dem Standpunkt stehen, dass solche Zusatzinformationen nicht notwendig sind, wenn man sich mittels GPS führen lässt. Aber für den Wan-
derer, der nicht ständig auf ein GPS-Gerät schauen möchte, ist es bezüglich der Orientierung schon markant, ob ein Weg durch ein Dorf, über freies Feld oder durch einen Wald verläuft.

16 Zwischenzeitlich kann das Projekt Informationen von vielen Anbietern nutzen. Luftbilder von Yahoo, Bing und anderen Plattformen wurden z.B. zum Abzeichnen bereit gestellt [58]
Ehrgeiz der Teilnehmer, der dazu führt, dass die Kartierer in ihrem Zuständigkeitsbereich eine korrekte Datenstruktur abliefern wollen.

4.2.1.2 Beispiele für touristische Umsetzungen

Vergleichbare Produkte, die jeweils auf eine Zielgruppe fokussieren, sind die OpenSeaMap [65] für den Wassersport und die OpenCycleMap [66] für Radfahrer. Beide nutzen jeweils die entsprechende Community, um ihren Datenbestand zu erfassen und letztlich auch aktuell zu halten. Und für beide existieren ebenfalls Apps, wenn auch auf unterschiedlichen Plattformen (z.B. iPhone bei der OpenSeaMap).
Abbildung 24: Reit- und Wanderkarte im Bereich Münster Süd (Hiltruper See). man erkennt ausgewiesene Reitwege und z.B. den Jakobsweg als Wander-Themenroute (Quelle: [62])

Abbildung 25: Locus Outdoor-App verwendet OSM-Reit- und Wanderkarte. (Quelle: [64])
4.2.1.3 Bewertung für touristische Geschäftsprozesse

4.2.2 OpenData
4.2.2.1 Kurzbeschreibung

4.2.2.2 Beispiele für touristische Umsetzungen

4.2.2.3 Bewertung für touristische Geschäftsprozesse

In den Geschäftsprozessen für Reisemittler oder Leistungsanbieter gilt dieselbe Einschränkung. Einzig und allein die jeweilige Destination kann prüfen, ob ihre Verwaltung, Region oder Kommune bereits ein brauchbares Open Data-Angebot aufweist und diese z.B. für die Rad- und Wanderplanung nutzbar ist.

Trotz der noch vorhandenen Nachteile ist Open Data eine sehr interessante Entwicklung, die mittelfristig zu brauchbaren Datenangeboten führen wird. Insbesondere in der Verknüpfung von öffentlichen Daten und solchen, die über Crowdsourcing erfasst werden, liegt eine vielversprechende Zukunft, in der qualitativ hochwertige *amtliche* Daten mit vielfältigen Informationen der diversen Communities verknüpft werden können.

4.2.3 3D

4.2.3.1 Kurzbeschreibung

17 OGC ist das Kürzel für das *Open Geospatial Consortium*, einem Normungsgremium für Geodatenanwendungen, das seine Fachergebnisse an Normungsbehörden wie ISO und DIN weiter leitet (vgl. [72]).
4.2.3.2 Beispiele für touristische Umsetzungen

Besonders bei historischen Stadtrundgängen hat die 3D-Modellierung in Verbindung mit virtueller Realität gefunden, da auf diesem Wege hervorragend vergangene Welten nachgebildet werden.

Eine spezielle Anwendung ist die Idee, 3D-Daten im Umfeld der Kreuzfahrten einzusetzen. Für die Plattform e-hoi.de click an cruise wurde ein Konzept erstellt, indem entsprechend der GPS-Koordinate des Kreuzfahrtschiffes die jeweilige Position an einen Browser geschickt wird. Dabei kann das Schiff als 3D-Modell beispielsweise im Hafen betrachtet werden, von der Mole aus werden POIs in der Umgebung angegeben. Zwischen Schiff und den POI kann ein Fußgängerrouting genutzt werden, damit die Kreuzfahrtgäste den Weg zum nächsten POI schnell und sicher finden (vgl. Bernsdorf, B. 2010; [75], [76]).

Abbildung 27: Qualität von 3D-Rekonstruktionen historischer Gebäude (Quelle: 3D-Rekonstruktionen [74])
4.2.3.3 Bewertung für touristische Geschäftsprozesse

4.2.4 360°-Panoramen

4.2.4.1 Kurzbeschreibung

Unter 360°-Panoramen versteht man allgemein eine Technik der Fotografie, in der vom Kamerastandort sozusagen aus dem Innern einer Kugel die Umgebung aufgenommen wird. Mit einer entsprechenden Software umgesetzt, lässt ein solches Panorama für den Betrachter einen Rundumblick zu.

Von hochprofessionellen fotografischen Dienstleistungen bis hin zur do it yourself-Lösung auf dem iPhone oder Android-Smartphones (vgl. GIS.Business 2011/1 und [77]) ist es möglich, jede Qualitätsstufe abzudecken. Softwarehersteller bieten dazu sogar kostenfrei Verarbeitungssoftware zum Download an. Als Beispiel kann der Microsoft Image Composite Editor gelten, der aus einer geeigneten Bilderserie ein 360°-Panorama erstellt (vgl. [78]).

4.2.4.2 Beispiele für touristische Umsetzungen

\(^{18}\) GNSS sind Global Navigation Satellite Systems wie GPS, Glonass oder zukünftig Galileo
4.2.4.3 Bewertung für touristische Geschäftsprozesse

Abbildung 30: Darstellung der Panoramen-Standorte auf einem Luftbild der Stadt Esens. Zu erkennen ist zusätzlich ein Werbe"banner" mit einem Link auf die Homepage des Werbedien. (Quelle: [79]).

4.2.5 Augmented Reality

4.2.5.1 Kurzbeschreibung

Beschrieben wurde die AR bereits in Kapitel 2.2.3. Es geht letztlich um die Projektion raumbasierter Objekte in die reale Welt, was im touristischen Bereich mit Hilfe des Smartphones geschieht. Die Kamera des Geräts wird dabei in einen Straßenzug gehalten und nimmt einen Ausschnitt der realen Welt auf. Aufgrund diverser Sensoren wie GPS, Kompass und Gyrometer lassen sich Position, Blickwinkel und Bewegungsrichtung des Nutzers ermitteln und aus einer Geo-Datenbank werden die dort enthaltenen geocodierten Objekte in das Bild projiziert (vgl. [22], [24], [25]). Entsprechend der deutschen Übersetzung erweiterte Realität löste die Technologie seit etwa 2009 einen regelrechten Hype aus. Denn die Anreicherung der Realität mit „kontextsensitiven, digitalen Inhalten wird die Art, wie wir in Zukunft Informationen suchen, verstehen

4.2.5.2 Beispiele für touristische Umsetzungen

4.2.5.3 Bewertung für touristische Geschäftsprozesse

Aufgrund der Verbreitung moderner Smartphones ist zu erwarten, dass das Angebot an solchen Anwendungen steigen wird. Im Geschäftsprozess der Endkundensysteme bietet die AR eine hervorragende Möglichkeit, dem Kunden lokationsbezogen konkrete Informationen und lokales Wissen zu liefern. Wie in der dargestellten Anwendung der Stadt Zürich kann sich der Reisende auf das Wesentliche, nämlich das Sightseeing oder seine Geschäftsreise, konzentrieren. Sicher-
lich gelten ähnliche Restriktionen wie in allen anderen Anwendungen bezüglich Bandbreite, Content etc. Und auch der Ansatz, dass man dem Nutzer einen gewissen Anteil an „Abenteuer“ nimmt\(^\text{19}\), mag hier angebracht sein. Aber für Touristen ist nichts ärgerlicher, als wenn aufgrund fehlender Informationen das positive Erleben ausbleibt und z.B. aufgrund unbekannter Anfahrtswege der Urlaubstag zum Stress gerät.

\[\text{Abbildung 31: Anwendung TRAMSURFING - travel like a local: Auswahl einer Sehenswürdigkeit mit Angabe der Straßenbahnlinie, Umsteigemöglichkeiten in der Bahn, Meldung "Aussteigen" in der Bahn, Richtungsangabe zur Sehenswürdigkeit. (Quelle:[80, [81])}\]

\(^\text{19}\) Allerdings kann man es bei diesem Argument auch mit dem Entdecker Roald Engelbregt Gravning Amundsen halten, dem der Satz: „Abenteuer ist schlechte Vorbereitung!“ zugeschrieben wird. Und dem Entdecker des Südpols kann man den Hang zum Abenteuer wohl kaum absprechen (vgl. [82]).
4.2.6 Datenschutzaspekte

4.2.6.1 Kurzbeschreibung

Problematisch wird es aber in jedem Fall, wenn standortbezogene Daten einzelner Personen im Internet verbreitet werden. Dann ist nach Meinung einer EU-Fachgruppe jedes Datum personenbezogen. Problematisch sei dabei, dass die betroffene Person oft nicht davon wisse, dass ihr Standort bekannt ist. Auch ist der betroffenen Person nicht bekannt, welche Daten zu welchem Zweck von Service-Anbietern genutzt werden. Hierzu fordert die EU ein Zustimmungsverfahren der betroffenen Personen (GIS.Business 2011/2).

4.2.6.2 Bewertung für touristische Geschäftsprozesse

Für jegliche Art von touristischen Geschäftsprozessen ist daher anzunehmen, dass die Nutzung von Geodaten und Informationen besonders im streng regulierten Deutschland nicht ganz unkritisch ist. Insbesondere, wenn es über Smartphone-Apps und Internet-Dienste um die Position

21 BITKOM = Bundesverband Informationswirtschaft, Telekommunikation und neue Medien e.V. [84].

des Nutzers geht. Für solche Anwendungen sollte in jedem Fall ein Fachmann hinzugezogen werden, der das Thema rechtlich beurteilen kann.

Andererseits hat eine Recherche auf der ITB 2013 auch ergeben, dass Apps und Dienste mit Geobezug und auch unter Auswertung der aktuellen Position in Deutschland bereits eine weite Verbreitung erfahren haben, wogegen das Ausland eher zurückhaltend ist. Viele deutsche Destinationen bieten solche Apps an oder haben sie in Vorbereitung, wogegen internationale Destinationen damit wenig anfangen können.

4.3 Positionierung

4.3.1 GNSS: GPS, Glonass und Galileo

4.3.1.1 Kurzbeschreibung

GPS, GLONASS und Galileo bezeichnen dabei unterschiedliche Systeme, die alle ähnlich funktionieren und sogar in so engen Frequenzabständen senden, dass in einer Endausbaustufe alle Systeme parallel genutzt werden können. Stellt jedes System für sich sicher, dass an jedem Ort der Erde grundsätzlich der Empfang eines verwertbaren Positionssignals ermöglicht wird, erhöht sich durch eine kollaborative Nutzung aller Systeme die Qualität der Positionsinformation erheblich und stellt eine sehr genaue Positionierung im Sub-Meter-Bereich sicher.

inzwischen so klein sind, dass sie problemlos in ein Smartphone zu integrieren sind. Das führt zu einer großen Verbreitung navigat
divfähiger Endgeräte.

4.3.1.2 Beispiele für touristische Umsetzungen

tung zunehmend das Internet genutzt. Der Sauerländische Gebirgsverein (kurz: SGV) hat so alle Wanderwege für sein Zuständigkeitsgebiet auf einem OpenStreetMap-Server verfügbar gemacht (vgl. [92]). Dort stehen sie gemeinsam mit dem geeigneten Datenmaterial zum Download bereit.

4.3.1.3 Bewertung für touristische Geschäftsprozesse

4.3.2 Geotagging

4.3.2.1 Kurzbeschreibung

In Zeiten der Smartphones ist diese Technologie jedoch erheblich einfacher anzuwenden. Sie ist bereits in die Kamerafunktion eingebaut und muss nur aktiviert werden. Und da man mit dem Telefon auch gleich online ist, wächst der Pool an geocodierten Bildern im Internet rasant.

\subsection*{4.3.2.2 Beispiele für touristische Umsetzungen}

Betrachtet man die Vielzahl der Geotags auf dem Domplatz in Abbildung 34, scheint das Geotagging im Tourismus schon sehr weit verbreitet zu sein. In jedem Fall hat die Nutzung des Smartphones zu einer erheblich größeren Verbreitung beigetragen, als das noch vor wenigen Jahren der Fall war.

23 Tag wird englisch wie „Täg“ ausgesprochen und bezeichnet eine Markierung. Bekannter ist der Tag als Anhängerschildchen, z.B. bei Waren im Kaufhaus [95].
Abbildung 34: Geotagging von Bildern in Google Earth (Quelle: Google Earth).
4.3.2.1 Bewertung für touristische Geschäftsprozesse

Es konnte nicht recherchiert werden, ob Geotagging auch in Prozessen der Leistungserbringer genutzt wird. Es ist jedoch anzunehmen, dass Flughäfen bei der GIS-Dokumentation Geotagging nutzen, um Sachverhalte zumindest im Außenbereich zu dokumentieren (etwa Schäden auf Start- und Landebahnen, Leitungen, etc.).

Dabei sei betont, dass Geotagging eine gute Möglichkeit ist, viele der oben beschriebenen Trends zu kombinieren und den Kunden an die Hand zu geben. Ein wichtiger Aspekt ist dabei, dass interessierte Touristen einerseits den Erlebniswert der Reise erhöhen, zudem sich intensiver mit der Lokation befassen und auch im Nachgang noch ein interessantes Nachreise-Erlebnis haben, wenn sie die geocodierten Bilder auf die entsprechende Plattform hochladen und dabei erneut betrachten.

4.4 Aktivitäten

4.4.1 GeoCaching

4.4.1.1 Kurzbeschreibung

Der Begriff *GeoCaching* beschreibt ein Spiel im Ductus einer Schnitzeljagd, das bereits sehr alt ist. Es geht darum, einen versteckten *Schatz* zu finden, den eine Person versteckt und die Koordinate bekannt gegeben hat. So kann der Schatz von anderen Spielern gesucht / gefunden werden. Es handelt sich meist um wasserdichte Behältnisse, in denen kleine Tauschobjekte sowie ein Logbuch enthalten sind (vgl. Ammersdorfer, D. 2008, [97], [98], [99]). Früher wurde das Spiel per topographische Karte gespielt und es war lediglich für eine spezielle Gruppe von Nut-

4.4.1.2 Beispiele für touristische Umsetzungen

Abbildung 34: Info-Flyer Geocaching Krummhörn-Greetsiel (Quelle: [100]).

Solche Indoor-Aktionen sind für Geocaching jedoch meist ungeeignet und funktionieren nur in besonderen Umgebungen. Im konkreten Fall war die Halle 9 des Messegeländes in Hannover aufgrund ihrer Bauweise gerade noch geeignet, um entsprechende Positionsgenauigkeiten zu erhalten. In massiveren Hallen würde eine solche Aktion nicht funktionieren (Bernsdorf, B. 2009, [101]).
4.4.1.3 Bewertung für touristische Geschäftsprozesse

Abbildung 36: Geocaching-Aktion auf der CeBIT 2009 (Quelle: Eigene Aufnahmen)

4.4.2 GPS-Hiking / GPS-Biking

4.4.2.1 Kurzbeschreibung

Eine Abwandlung von Geocaching findet sich im Umfeld der Jugendherbergen (vgl. Kapitel 2.1). Bezogen auf die Zielgruppe der Schüler und zur Attraktivitätssteigerung von Schulwanderungen werden Aktivitäten wie Wandern und Radfahren durch die Nutzung von GPS-Geräten aufgewertet, die die Kinder und Jugendlichen zu gewissen Positionen führen (extratour 2012/2). Hierfür wurden eigene Produkt-Begriffe kreiert, die die Zielgruppe ansprechen sollen: GPS-
Hiking und GPS-Biking. Diese Aktivitäten werden besonders beworben und funktionieren in gewisser Weise wie die beschriebenen Multicaches. Anders als beim Multicache ergibt aber nicht zwingend die Lösung einer Aufgabe die nächste Koordinate. Hier arbeiten GPS-Hiking und GPS-Biking mit ganz normalen Waypoints (als POI bezeichnet), deren Koordinate bekannt ist. Auch App-Entwickler haben das Thema bereits entdeckt und bieten spezielle Anwendungen wie etwa die App *AlpineQuest GPS Hiking* an (vgl. [102]).

4.4.2.2 Beispiele für touristische Umsetzungen

Konkrete touristische Umsetzungen konnten nur im Umfeld der Jugendherberge Lüneburg gefunden werden. *extratour* (2012/2) berichtet über das Angebot für Wanderungen und Radtouren, diese Möglichkeit für Erkundungen und Naturentdeckungstouren zu nutzen. Auf der Internetseite der Jugendherberge sind dazu entsprechende Bausteine angegeben und mit Preisen hinterlegt (vgl. [103]).

4.4.2.3 Bewertung für touristische Geschäftsprozesse

4.4.3 GPS-Gaming – weitere Möglichkeiten

Die wachsenden Internet-Communities sind bezüglich des Einsatzes der Geokoordinate sehr kreativ und entwickeln ständig neue Spielformen wie beispielsweise *Geodashing, SputterShot, MinuteWar, Geopoker* oder *GeoGolf* (vgl. [104]). Eine besondere Herausforderung ist dabei, dass zwischenzeitlich die ganze Erde zum Spielfeld geworden ist und einige Spiele tatsächlich Interkontinentalreisen erfordern (obwohl jedes dieser Spiele auch eine lokale Komponente ausweist, die aber im internationalen Wettbewerb steht). Unter Nutzung des GPS eifern solche
Aktivitäten dem beliebten *Scotland Yard in Real Life* nach, das in seiner ursprünglichen Version noch mit dem Stadtplan und über Telefonzellen gespielt wurde (vgl. [105]).

Diese Besonderheiten spielen im touristischen Umfeld noch kaum eine Rolle und sind eher als Freizeitaktivitäten einiger Weniger zu verstehen. Mit der Verfügbarkeit moderner Smartphones ist aber davon auszugehen, dass sie sich – ähnlich wie das Geocaching – langsam aus der Community in den freien Markt bewegen und Destinationen solche Spielformen aufgreifen und in ihr Angebot einfügen.

4.5 Mapping in Reisebeschreibungen

Man kann an dieser Stelle wieder die eingangs genannte Diskrepanz zwischen den technischen Möglichkeiten und der konkreten Nutzung erkennen. Da – wie in jedem Kapitel über die Trends belegt wurde – Anwendungen existieren, ist an dieser Stelle offensichtlich, dass es sich um voneinander getrennte Nutzergruppen handelt. Der Verfasser eines Reiseberichts ist nicht derjenige, der die beschriebenen Technologien nutzt, um seinem Leser die Reise näher zu bringen. Der Nutzer, der mit Geotagging-Fotos Google Earth bereichert, ist offensichtlich nicht der Verfasser von Reiseberichten. Hier klaffen also noch Lücken zwischen den Menschen, die berichten möchten und denjenigen, die sich mit der Technik befassen.
5 Fazit

25 IKT wird für die Informations- und Kommunikations-Technologie verwendet, die die drei Schwerpunkte Mainstream-IT mit Soft- und Hardware, Internet/mobiles Internet und mobile Endgeräte umfasst.

Hinweise gibt es über die wachsende Zahl an Geocaches auf der Welt und über die zunehmende Zahl an Menschen, die ihre Freizeit für OpenStreetMap und andere Crowdsourcing-Projekte einsetzen.

5.1 Bewertung der Ausgangsthesen

Die vorliegende Ausarbeitung wirft daher mehrere Fragen auf, die an dieser Stelle als Thesen formuliert und vorläufig bewertet werden:

These 1:
Tourismus und Touristik haben einen starken Bezug zu Geoinformationen. Es lässt sich aber vermuten, dass die Begrifflichkeiten und der Umgang mit dem Thema eher eine untergeordnete Rolle spielen.

Vorläufige Bewertung:
Obwohl gezeigt werden konnte, dass bereits viele Methoden der Geo-IT im Tourismus Einzug halten, sind moderne Ansätze noch immer etwas für Technik-Fans. Die Zusammenstellung von Kartenmaterial für die Nutzung in GPS-Geräten, die dazu notwendige Befassung mit Standards sowie die Vielzahl von technischen Varianten, mit denen Lösungen erstellt werden, überfordert den normalen Touristen bei Weitem. Gleiches gilt auch für die Touristiker, die letztlich nicht

These 2:

Konkrete touristische Angebote, in denen der Umgang mit Geodaten und Systemen eine Rolle spielt, sind ein Trend, der eher der Jugend als dem Durchschnittstouristen angeboten wird.

Vorläufige Bewertung:

These 3:

Die Möglichkeiten von Web 2.0 und Social Media können auf Anbieterseite vielfach nicht genutzt werden, da die technischen Voraussetzungen nicht gegeben sind.

Vorläufige Bewertung:

Aufgrund der in These 1 schon beschriebenen Vielfalt ist es für Leistungsanbieter schwierig, jedem Trend zu folgen. Das gilt jedoch nicht nur für die Entwicklungen in der Geoinformationsbranche. Auch Buchungsmaschinen und Internetauftritte allgemein sind davon betroffen. Insbesondere kleinere Leistungserbringer hinken der Entwicklung hinterher, wie das Beispiel der klassischen Hoteliers für Links und Recht der Autobahn zeigt. Solche Unternehmen sind auch nicht in den sozialen Medien vertreten und der Web-Auftritt ist eher klassisch, bietet keine 360°-Panoramen der Lobby oder gar einen GPX-Download für Ausflüge in die Umgebung. Wie die ITB 2013 gezeigt hat, trifft das aber auch für Hotelketten zu, die ganz speziell die junge Ge-
peration ansprechen. Der Vergleich von AO Hostels mit Generations spricht eine deutliche Sprache.

These 4:
Ein Tourist ist auf Geoinformationen angewiesen, weil er seinen Lebensmittelpunkt verlässt.

Vorläufige Bewertung:

Jedoch gibt es auch die Klientel, die Geoinformationen tatsächlich benötigt, nämlich dann, wenn es sich um eine selbst organisierte Reise handelt. Das kann eine Dienstreise sein (hier hilft das Navigationssystem im Auto oder Smartphone) oder z.B. eine Trekking- oder Radreise. In diesen Fällen ist die Bereitstellung von Geodaten und für den Einsatzzweck geeignetes Kartenmaterial sehr hilfreich, um eine solide und sichere Planung durchführen zu können. Aber auch hier stellt sich die Frage, ob der Bedarf über geo-IT zu decken ist, oder ob analoge Medien geeigneter sind (Onlinzugriff, Bandbreiten, Stromversorgung, etc.).

These 5:
Es gibt unterschiedliche Sichtweisen in der Geoinformationswirtschaft und der Tourismusbranche. Erstere ist angebotsgetrieben und will innovative Hochtechnologie platzieren, letztere benötigt einfachste Informationssysteme, die intuitiv bedient werden können.

Vorläufige Bewertung:
GIS-Softwareproduzenten sind da nicht flexibel genug, weil eine GIS-Software meist auf die Bedürfnisse von 80% der Geo-Spezialisten ausgerichtet ist. Sie enthält viele Funktionen, die im Tourismus nicht benötigt werden. Daher ist eine Touristik-Organisation auch nicht bereit, die entsprechenden Lizenzgebühren zu zahlen und orientiert sich an kostengünstigeren Angeboten, die zudem ihre Zielgruppe mehr ansprechen.

These 6:
Die Geoinformationswirtschaft hat in den letzten Jahren einen erheblichen Innovationsschub erfahren und kann Prozesse der Tourismusbranche hervorragend unterstützen. Aufgrund der Tatsache, dass sich offensichtlich aber genügend Kunden für touristische Dienstleistungen ohne Geo-IT werben lassen, werden die Investitionen in neue Technologien nur von wenigen Leistungserbringern getätigt.

Vorläufige Bewertung:
Das Verhältnis von Ausstellern und denjenigen, die Geo-IT anbieten ist auf der ITB 2013 sehr markant. Diese These erklärt, warum das so ist: Touristen lassen sich aufgrund eines ansprechenden touristischen Angebots werben, aber nicht durch die Existenz eines WebMapping auf der Internetseite oder einer App für Weinkenner. Das sind Neben“produkte“, die die Informationsrecherche ggf. vereinfachen. Sie sind aber nicht kaufentscheidend. Im Gegenteil konnten Interviews auf der ITB 2013 zeigen, dass das Angebot von zu viel Information möglicherweise den Erlebniswert für den Touristen mindern, da er gut vorbereitet nicht mehr als „Entdecker“ der ihm unbekannten Region unterwegs ist.

These 7:
Komplexe Geo-IT-Systeme, die zudem teure Grundlagendaten und immer aktuelle Fachinformationen benötigen, werden für Prozesse im Bereich der touristischen Endkunden-Anwendungen entwickelt, in denen ein Ausfall des Teilprozesses Geoinformation kaum eine Rolle spielt!

Vorläufige Bewertung:
Hier handelt es sich um eine Synthese aus mehreren der oben beschriebenen Annahmen. Die Geoinformationsbranche bietet vielfältige Möglichkeiten. Die Angebote sind durchaus dem Bereich der Hochtechnologie zuzuordnen. Ein Tourist wird sich damit aber nicht befassen wollen, wenn er Urlaub macht. Und bisher konnte man auch ohne 3D-Modell des Mailänder Doms Urlaub in Italien machen. Es sind daher Nice-to-have-Angebote, die nicht zwingend erforderlich

These 8:

Vorläufige Bewertung:

These 9:
Darüber hinaus gibt es einen großen und etablierten Markt an analogen Alternativen (Karten, Reiseführer), die zudem unabhängig von Stromversorgung und Mobilfunkabdeckung sind.

Vorläufige Bewertung:

5.2 Nächste Schritte
Im Rahmen des Projektes geonet 2.0 dient diese Zusammenstellung als Ausgangslage für weitere Betrachtungen. In einem zweiten Schritt sollen Spezialisten der Tourismusbranche einbezogen werden, um sich anhand dieser Situationsdarstellung sowie der Thesen mit der Frage aueinanderzusetzen, ob Geoinformation und Raumbezug tatsächlich entscheidend für die touristischen Geschäftsprozesse sind. Die vorliegende Studie hat sich sehr auf die Prozesse im Endkundenbereich fokussiert. Es klingt verschiedentlich an, dass auch andere Themenfelder wie z.B. das Aviation-Umfeld einen großen Bezug zu Geodaten haben. Um aber die Vielfalt einzuzgrenzen wird sich die weitere Untersuchung auf den Endkunden konzentrieren.
6 Literatur

6.1 Fachbücher, Zeitschriftenartikel und Vorträge

Amersdorffer, D. (2009): Die OpenStreetMap – OSM wird digitale Karten im Tourismus verändern.- Tourismuszukunft Marktforschung GmbH & Co. KG (Hrsg.): WebSite Tourismuszukunft - Institut für eTourismus, 1 S.: (Download: siehe [40])

Bernsdorf, B. (2010): Die Wichtigkeit von Geodaten für Unternehmen.- Vortrag Bing Maps Kompetenztag, Microsoft Deutschland, München, 14 S. (Download siehe [75])

6.2 Internetquellen

Hinweis:

[20] FOSSGIS e.V. (Hrsg.): OSM Deutschland WebSite.- http://openstreeetmap.de/

[28] Alpstein Tourismus GmbH & Co. KG. (Hrsg.): Firmen-Website: http://www.alpstein-tourismus.com/de/

[29] Juniper Research Ltd. (Hrsg.): Firmen-WebSite: https://www.juniperresearch.com/

[37] MapQuest Inc. (Hrsg.): MapQuest Discover.- Homepage Earth Viewer-Service: http://discover.mapquest.com/

[38] Stadt Bergheim – Die Bürgermeisterin (Hrsg.): Stadtführungen der Stadt Bergheim im Internet.- http://www.bergheim.de/Stadtfuehrungen.aspx
[39] Stadt Bergheim – Die Bürgermeisterin (Hrsg.): Stadtführungen der Stadt Bergheim im Internet (Google Maps).- http://maps.google.de/maps/ms?source=s_q&hl=de&aq=&ie=UTF8&t=h&rq=1&ev=zi&radius=2.87&split=1&hq=sehensw%C3%BCrdigkeiten&hnear=&msa=0&msid=210034116306918144456.00048d723786ccd4e1a0&ll=50.957156%2C6.636944&spn=0.013057%2C0.027509&z=15

[43] Fachhochschule Münster, Prof. Dr. Gernot Bauer (Hrsg.): Naviki-Homepage.- http://www.naviki.de/naviki/start

[52] Teker, Ugur mapsinside.de (Hrsg.): Firmen-WebSite: http://mapsinside.de/

[53] Teker, Ugur mapsinside.de (Hrsg.): Use Cases: http://mapsinside.de/?page_id=436

[54] Teker, Ugur mapsinside.de (Hrsg.): How it works: http://mapsinside.de/?page_id=434

[56] FOSSGIS e.V. (Hrsg.): OSM Deutschland WebSite.- Stichwort Was ist OSM?: http://openstreetmap.de/faq.html#was_ist_osm

[58] Wikimedia Deutschland - Gesellschaft zur Förderung Freien Wissens e.V. (Hrsg.): wikipedie.de.- Stichwort OpenStreetMap: http://de.wikipedia.org/wiki/OpenStreetMap

[59] Open Knowledge Foundation (Hrsg.): Open Data Commons.- Stichwort: ODbL: http://opendatacommons.org/licenses/odbl/

[60] FOSSGIS e.V. (Hrsg.): OSM Deutschland WebSite.- Stichwort Karte im Bereich Münster Innennstadt: http://openstreetmap.de/karte.html

[64] Asamm Software s.r.o.: Locus Outdoor-App auf AndroidPIT:- http://www.androidpit.de/de/android/market/apps/app/menion.android.locus/Locus-Free

[71] Kolbe, Th. (Hrsg.): Virtual 3D City Models.- Hompage der OGC-3D-Fachgruppe CityGML: http://www.citygml.org

[73] Ruhr.TOURISMUS, Regionalverband Ruhr (Hrsg.): Homepage des Ruhr.TOURISMUS.- Kartentwerkzeug des Tourismusauftritts für die Weltkulturhauptstadt 2010: http://maps.ruhr-tourismus.de/

[77] Occipital LLC (Hrsg.): Firmen-WebSite – App 360°-Panoramen: http://occipital.com/360/app

[84] BITKOM e.V. (Hrsg.): WebSite des Bundesverbandes BITKOM: http://www.bitkom.org
[89] GARMIN Ltd. (Hrsg.): Deutschsprachige Firmen-WebSite: http://www.garmin.com/de-DE/
[95] Leo Dictionary Team (Hrsg.): Leo Online Dictonary - Wörterbuch Deutsch ↔ English.- Stichwort Tag: http://dict.leo.org/ende/index_de.html#/search=Tag&searchLoc=0&resultOrder=basic&multiwordShowSingle=on

[104] GPSgames.org (Hrsg.): Community-WebSite: http://www.gpsgames.org
